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1. Introduction

Pyroglutamic acid or 5-oxo-proline has emerged as an impor-
tant starting material for asymmetric synthesis of many natural
products. From the first reported application of pyroglutamic acid
in an asymmetric synthesis of Domoic acid 161a in 1982, the last
two decades have witnessed an exponential outgrowth of publica-
tions on chemistry and asymmetric/biological uses of pyroglutamic
acid.1b

Derived from glutamic acid, derivatives of pyroglutamic acids
are a cheap source of chirality. The advantage of pyroglutamic acid
in asymmetric synthesis lies in a rigid five-membered skeleton
with strong stereo-electronic influence of two different carbonyl
entities in the molecule which can be differentially functionalized.
These features of pyroglutamates have been extensively exploited
ll rights reserved.

.
Panday).
and the present review makes an attempt to list out all the major
advances in this area.

Pyroglutamic acid has two differentially activated carbonyls.
The asymmetric use of pyroglutamic acid has exploited their reac-
tivity differences as such or by accentuating these by further deriv-
atizations. The review is aimed to describe these developments and
to explore further possibilities on the uses of pyroglutamic acid as
a chiral synthon. In the present communication the major uses of
pyroglutamic acid as a chiral synthon have been classified on the
following lines.

2. Asymmetric use of pyroglutamates with prior modifications

2.1. Reduction of carboxylic groups

The first use of pyroglutamates as chiral synthon in the synthe-
sis of complex molecule was in the synthesis of (�)-Domoic acid by
Ofune et al.1a The N-protected pyroglutamic acid was reduced to

http://dx.doi.org/10.1016/j.tetasy.2009.06.011
mailto:drsharadpandey@yahoo.com
http://www.sciencedirect.com/science/journal/09574166
http://www.elsevier.com/locate/tetasy


1582 S. K. Panday et al. / Tetrahedron: Asymmetry 20 (2009) 1581–1632
the corresponding alcohol which was protected by TBS. This pro-
tected synthon has only one activated carbonyl which was a-alkyl-
ated in high enantiomeric excess. The reduction of carbonyl
function and its subsequent protection by TBS not only excluded
the deprotonation at C-2, that is, loss of chirality, but also influ-
enced the a-approach of electrophile (Scheme 1).

Similar reduction and protection sequence was also used2 in the
synthesis of trans-4-cyclohexyl proline 24 (Scheme 2), an interme-
diate for the synthesis of fosinopril, a potent ACE inhibitor. In this
case reaction of pyroglutaminol with benzaldehyde gave a bicyclic
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system, where phenyl acquires an equatorial position. Alkylation of
the lithio enolate proceeded with high facial selectivity to give 4-a-
product 24.

Langlois et al. have carried out asymmetric synthesis of antihy-
pertensive pyrrolidines3 34 by using 2-hydroxymethyl pyrogluta-
mate 25 as a chiral synthon (Scheme 3). The protected 2-
hydroxymethylpyrrolidine-5-one was reduced to cyclic aminol
27 which was used in C–C-bond forming reaction at C-5. The car-
bonyl group in 29 was derivatized via thioketalization in the pres-
ence of TsOH followed by hydrogenation with Raney Ni to get
OH
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compound 32. The resulting product on oxidation yielded an alde-
hyde 33 which was converted into the desired antihypertensive
agent 34.

Similarly the pyroglutamate-derived cyclic protected synthon
has been used by Baldwin et al.4 for the generation of a Michael
acceptor moiety which was used in one-pot Michael addition–
alkylation sequence to yield stereodefined 3,4-disubstituted pyro-
glutamate derivative 36 (Scheme 4).

Investigations reported by Hamada et al. on the asymmetric use
of pyroglutamates with prior reduction of carbonyl group describe
the synthesis of the 2,3-dihydroxy-4-dimethylamino-5-methoxy-
pentanoic acid5 46 a fragment of calyculins, starting from (S)-5-
(hydroxymethyl)-2-pyrrolidinones 18 (Scheme 5).

Making use of pyroglutamic acid as a cheap chiral source, Lang-
lois et al. reported the synthesis of enamidoaldehyde 49 as new
common synthons for the preparation of analogs of sibiromycin
and other antitumour antibiotics6 (Scheme 6). Compound 47 was
converted into N-acylated derivative 48, by reaction with NaH
and p-nitrobenzoyl chloride. Resultant N-acyl derivative 48 was
converted into aldehyde 49 in three steps as shown in Scheme 6.
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A publication by Woo et al. has described the asymmetric syn-
thesis of a-amino acids by reaction at C-3, C-4 and C-5, of pyroglu-
tamate derivatives starting from (S)-pyroglutamic acid derivative
50.7 They also reported ring opening through 2-lithio-1,3-dithiane
at low temperature furnishing compound 52, whereas reaction of
50 with vinyl magnesium bromide followed by reduction afforded
compound 51 (Scheme 7).

Total synthesis of (+)-monomorine 67, a natural attractant for
Pharaoh ant workers was carried out from chiral cyclic b-enamino-
ester derived from (S) pyroglutamic acid in seven steps by Saliou
et al.8 (Scheme 8). Pyroglutaminol 18 after tosylation was con-
verted to o-tosyl derivative 62. Compound 62 on reaction with
di-n-propyl lithium cuprate was converted to compound 63 having
n-Bu group at position 5. Compound 63 on reaction with dimethyl-
sulfate followed by treatment with Meldrum’s acid and on subse-
quent reaction with sodium methoxide furnished b-enaminoester
64 which on hydrogenation in the presence of H2/Raney Ni affor-
ded 65 with the desired stereochemistry. Compound 65 after the
protection of NH with benzyloxy carbonyl chloride followed by
reduction of alcohol group to aldehyde, was subjected to Witting
reaction with CH3COCH@PPh3 ylid. The resultant compound on
hydrogenation had undergone deprotection, reduction and cycliza-
tion to give (+)-monomorine 67.

Stereoselective methylation of bicyclic lactams derived from D-
pyroglutamic acid 68 has been reported by Armstrong et al.9 The
bicyclic compound 70 was converted to 4-methyl pyroglutaminol,
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which on reduction afforded 2,4-dimethyl pyrrolidone 72 the chi-
ral antipode, which was converted to N-protected cis-2,4-dimeth-
ylglutamide 73 in three steps (Scheme 9).

Kohn et al.10 carried out the synthesis and characterization of
chiral 1,2-diamines from pyroglutamic acid where pyroglutamic
acid 17 on reaction with anhydrous chloral in the presence of
toluene afforded bicyclic derivative 74 which on reaction with
primary amine in toluene underwent ring opening of the
oxazolidinone ring of bicyclic aminal 74 to furnish pyroglutamoyl
amide derivative 75. Compound 75 on reduction of lactam car-
bonyl as well as amidic carbonyl group with lithium aluminium
hydride furnished the desired 1,2-diamines 76 (Scheme 10).

Sengoku et al.11 carried out asymmetric synthesis of pyrrolizi-
dine alkaloids (+)-hyacinthacine B1 and (+)-B2. The representative
synthesis of (+)-hyacinthacine B1 is described here (Scheme 11).
Pyroglutamic acid derivative 77 on catalytic sharpless asymmetric
dihydroxylation(AD) with AD-mix-a [(DHQ)2 PHAL ligand] affor-
ded compound 78, which after protection, deprotection coupled
with cyclization afforded compound 79. Deprotection of com-
pound 79 with tetrabutyl ammonium fluoride in THF followed by
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deprotection of hydroxyl groups with trifluoroacetic acid afforded
(+)-hyacinthacine B1 80.

Moeller et al. have modified carboxylic functional group of
pyroglutamates with an objective to synthesize spirocyclic L-
pyroglutamide building blocks12 86 (Scheme 12). Pyroglutamic
acid was converted to its menthyl ester followed by deprotection
at C-2 using Pt wire, n-Bu4PF6 and methanol as a solvent to afford
C-2 methoxylated menthyl ester 82 which on reaction with allyl-
trimethylsilane and TiCl4 was converted to C-2 alkylated product
83. Compound 83 on reaction with methanolic ammonia and NaCN
was converted to primary amide 84. Compound 84 on oxidation
with aqueous OsO4/NaIO4 followed by reaction with triethylsilane
and TFA using nitro methane as a solvent underwent hydrodehydr-
oxylation to give 86 as building block.

Magni et al. carried out the synthesis of (R)-3-[(S)-(5-oxo-2-
pyrrolidinyl)carbonyl]-thiazolidine-4-carboxylic acid (Pidotimod)
90 as an immunostimulating agent13a,b from pyroglutamic acid
(Scheme 13). Here pyroglutamic acid was treated with ethyl L-thia-
azolidine 4-carboxylate in the presence of DCC and CH2Cl2 to afford
compound 88, which upon alkaline hydrolysis gave carboxylic acid
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89. The carboxylic acid was converted to its derivatives 90 by reac-
tion with various nucleophiles.

Lin et al. synthesized14 (S)-3-methyl-5-(1-methyl-2-pyrrolidi-
nyl)isoxasole 96 as a cholinergic channel activator with potent cog-
nitive and anxiolytic activities from pyroglutamic acid 17 (Scheme
14). Pyroglutamic acid was converted to its methyl ester in situ and
was subjected to Claisen condensation with acetone oxime dian-
ion, thereby affording compound 93. The acetone oxime compo-
nent in compound 93 in the presence of H2SO4 as a catalyst
underwent cyclization to afford 94, which on reduction of lactam
amide with borane, followed by N-methylation gave the desired
ABT-418 derivative 96.

Benoit Rigo et al. investigated15 various N- and C-protection and
deprotection sequences in native pyroglutamate with an aim to de-
velop different reaction methodologies for the synthesis of bioac-
tive molecules (Scheme 15).
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Reaction of pyroglutamic acid chloride with isopropylidine mal-
onate (Meldrum’s acid) is reported to give C-acylated Meldrum’s
derivative whose methanolysis gave b-keto ester 103 (Scheme
16), however the reaction of acyl chloride with sodium salt of Mel-
drum’s acid (isopropylidene malonate) in pyridine could not be re-
peated by Rigo et al.15,16

Nagasaka et al.17 established a new approach to get two enan-
tiomers of 5,5-disubstituted 2-pyrrolidinones 108 with specified
configuration starting from pyroglutamic acid through its bicyclic
lactam (2R,5S)-2-aryl-1-aza 3-oxabicyclo[3.3.0]oct-5-en-7-one
105 (Scheme 17). Bicyclic lactam 105 was deprotonated at C-5
by NaH and the resultant anion on Michael addition with
methyl acrylate gave two diastereomeric Michael adducts 106
and 107, which were separated and pure compound 107 on acidic
hydrolysis afforded the desired 5,5-disubstituted 2-pyrrolidinone
108.
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In our studies on the asymmetric use of pyroglutamic acid we
synthesized18 a-benzyl derivative through condensation of pyro-
glutamic acid with trimethylacetaldehyde to get a bicyclic deriva-
tive 109 as a chiral auxiliary which on deprotonation with LiHMDS
followed by reaction with electrophiles gave chiral a-substituted
NO

O

H

Ar

NO

Ar

1. CH2=CHCOOMe

2. NaH
3. DMSO.THF

105 10

107
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rt O

Scheme

NO
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17
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Scheme
pyroglutamate derivative 110 through self-reproduction of chiral-
ity (Scheme 18).

Ostendorf et al.19 established the synthesis of enantiopure
hydroxyamidines 116, utilizing base-catalyzed enantioselective
reactions such as Michael reaction (Scheme 19). Methyl pyrogluta-
mate 111 was treated with PhMgBr at low temperature to afford
tertiary alcohol, which was converted to silyl ether 112 with
TBDMSOTf. Compound 112 on N-derivatization with acrylonitrile
afforded compound 113 which on reductive amination of cyano
group followed by N-Boc protection afforded compound 114. Com-
pound 114 after a sequence of reactions furnished the desired bicy-
clic amidine 116.

Acevedo et al.20 synthesized sterically constrained L-glutamine
analogues (3S,4R)-3,4-dimethyl-L-glutamine 123 and (3S,4R)-3,4-
dimethyl-L-pyroglutamic acid from pyroglutamic acid (Scheme
20). Compound 117 already discussed1a on methylation with di-
methyl lithium cuprate followed by reaction with MeI/Et2O affor-
ded 118 which after a sequence of reactions was converted to
the desired glutamine analogue 123.

Marchalin et al. developed new methodology for the synthesis
of (S)-thieno[f]indolizinedione 125 from N-alkylated (S)-pyroglu-
tamic acid21 124 (Scheme 21).

Olson et al.22a,b carried out reduction–iodination of methyl N-
benzyl pyroglutamate 126 to get iodide 127, which on reaction
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with vinyl magnesium bromide and dilithium tetrachloro cuprate
gave 128, a precursor for peptide mimetic of the thyrotropin-
releasing hormone (Scheme 22).
N
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3. NaI, Me2CO

NO

Bn
129

Scheme
Altman et al. carried out the synthesis of (S)-5-(aminoxymeth-
yl)pyrrolidone 130 from (S)-5-(hydroxymethyl)pyrrolidone 18
through Mitsunobu reaction with hydrazoic acid followed by the
hydrogenation of the resulting azide23 (Scheme 23).

Wei et al.24 synthesized (S)-5-alkenyl-2-pyrrolinones 132 from
N-Boc protected methylpyroglutamate 131. Ester group of com-
pound 131 was reduced to the corresponding aldehyde with diiso-
butylaluminium hydride at �78 �C. Witting reaction followed by
oxidation with pyridinium chlorochromate (PCC) afforded (S)-5-
alkenyl-2-pyrrolidinones (Scheme 24).

Langlois25 et al. carried out stereoselective synthesis of (2S)-2-
hydroxymethylglutamic acid 136 starting from (S)-pyroglutaminol
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18 through a bicyclic silyloxypyrrole derived from versatile unsat-
urated lactam (Scheme 25). Compound 133 on reaction with SnCl4

and NaHCO3 was converted to 134 having hydroxyl group at posi-
tion 5, which on reaction with Me3SiCN, SnCl4 followed by acidic
hydrolysis afforded 136.

Davies et al. achieved the synthesis and explored the utility of
the 3,3-dimethyl-5-substituted-2-pyrrolidinone 140 using pyro-
glutamic acid as a chiral auxiliary26 (Scheme 26). Compound 18
on reaction with 2,2,dimethoxypropane in the presence of pTSA,
followed by double alkylation at position 7 using LDA and MeI
was converted to 138 which on acidic hydrolysis was changed to
4-substituted pyroglutaminol 139. Treatment of 139 with
TBDMSCl in DMF afforded the desired product 140.

Langlois et al. synthesized racemic and enantiopure (±)-deoxy-
dysibetaine 143 from methyl pyroglutamate27 111. Compound 111
was deprotonated with LiHMDS and alkylated with Eschenmoser’s
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salt to afford 141 which on treatment with CH3I was converted to
quaternary ammonium salt 142. Compound 142 on passing
through alkaline Dowex-550A afforded (±)-deoxydysibetaine
(Scheme 27).

Villeneuve et al.28 carried out the synthesis of pyroglutamic acid
fatty esters 145 through lipase-catalyzed esterification with med-
ium chain alcohols (Scheme 28).

Langlois et al.29 carried out diastereoselective synthesis of (±)-
deoxydysibetaine 152 which was prepared from methyl pyrogluta-
mate through a regioselective Mannich reaction at C-2 (Scheme
29). Compound 146 on reaction with MsCl in pyridine followed
by the introduction of azide group at position 2 using NaN3 was
converted to 148, which on hydrogenation in the presence of H2/
Pd–C afforded 149. The resultant amine 149 on reaction with
CH3I–iPr2NEt was converted to 151 and the desired product (±)-
deoxydysibetaine 152 was obtained from 151 according to the pro-
cedure already described in Scheme 27.

Itoh et al.30 carried out asymmetric synthesis of 1-substituted
1,2,3,4-tetrahydro-b-carbolines employing pyroglutamic acid
derivative as a chiral auxiliary (Scheme 30).

Puschel et al. described the synthesis of pyrrolidinone PNA; no-
vel conformationally restricted PNA analogues, for example,
(3R,5R)(3S,5S)pyroglutamate-PNA monomers31 (Scheme 31). Com-
pound 156, derived from pyroglutamic acid on reaction with
MoOPh in the presence of LiHMDS and BuLi followed by the pro-
tection of OH group and deprotection of Boc group using Bomchlo-
ride and TFA was converted to 3-substituted product 158, which on
reaction with NaH and BrCH2COOMe afforded N-acylated product
159. Compound 159 after deprotection gave an alcohol 160 which
was converted to 162 by similar steps as described in Scheme 29.
Compound 162 on hydrogenation with H2/Pd–C, followed by pro-
tection of amino group using Boc and subsequent reaction with
H2 and Pd(OH)2 afforded 163 with deprotection of Bom. Further
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reaction of 163 under Mitsunobu conditions, followed by alkaline
hydrolysis afforded 165.

Oba et al.32 established novel stereocontrolled approach to
conformationally constrained analogues of L-glutamic acid and
L-proline via stereoselective cyclopropanation of 3,4-didehydro-L-
pyroglutamic ABO ester. Compound 166 was subjected to 1,3-dipo-
lar cycloaddition with CH2N2, followed by photolysis with
benzophenone using Hg lamp and compound 168 thus obtained
on hydrolysis with MeOH–HCl was converted to methyl ester
169 with deprotection of Boc group. N-Protected compound 170
on reduction with BH3–THF followed by acidic hydrolysis on
Dowex 50-X8 afforded 172 (Scheme 32).

Herdeis et al.33 carried out the synthesis of unsaturated ortho-
pyroglutamic ABO ester 166 from pyroglutamic acid (Scheme
33). Pyroglutamic acid was converted to its alkenyl ester, which
on reaction with mCPBA, followed by reaction with zirconocene
catalyst and silver perchlorate afforded ABO ester 174, which
was converted to N-protected compound 175. Compound 175
upon oxidation under usual conditions, followed by oxidative des-
elenenylation using H2O2 afforded 166.
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Stevens et al. reported a short and elegant synthetic pathway
for the synthesis of 1,3-dioxo-hexahydropyrido[1,2-c][1,3]diaze-
pine carboxylates, a new 1,3-diazepan-2,4-dione 181 containing
bicyclic moiety, starting from pyroglutamate34 (Scheme 34). Com-
pound 177 on reaction with LiHMDS was deprotected at C-2, resul-
tant anion on reaction with electrophile afforded 178, where
lactam carbonyl C–N bond was cleaved using NaH, RNCO to expend
the ring and resulting product on reaction with electrophile in the
presence of K2CO3 yielded 180. Compound 180 was subjected to
cyclization with Grubb’s II generation catalyst thereby affording
compound 181.

Bourry et al. reported their studies on pyrrolidinones through
reaction of methylene dichloride under Friedal–Crafts conditions,
with an objective to synthesize a-hydroxymethyl ketone in the
hexahydrobenzo[f]indolizine series35 (Scheme 35) using pyroglu-
tamic acid as a chiral precursor.

Mavromoustakos et al.36a,b reported the synthesis, binding stud-
ies and in vivo biological evaluation of antihypertensive analogues
188 using pyroglutamic acid as starting material (Scheme 36).
Compound 111 on reaction with NaH, PhCH2Br, followed by reduc-
tion using LiBH4 was converted to N-benzyl methyl pyroglutaminol
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186, which was converted to its o-tosyl derivative 187. Treatment
of 187 with lithium imidazole afforded antihypertensive agent
188.

Beal et al. described anodic oxidation/olefin metathesis strategy
thereby developing a unified approach to the synthesis of bicyclic
lactam peptidomimetics using pyroglutamic acid37 (Scheme 37).
Pyroglutamic acid derivative 189 on acidic hydrolysis was con-
verted to intermediate product and subsequent reaction with pyro-
glutamic acid, followed by amination using NH3 and MeOH
afforded 190.

Langlois et al. reported the tandem electrophilic and nucleo-
philic addition to bicyclic tert-butyl-dimethylsilyloxypyrrole de-
rived from (S) pyroglutaminol38 (Scheme 38).

2.2. Activation of lactam carbonyl at C-5 by formation of
thiolactam, imino, iminium ethers and as lactam acetals

Suitably activated lactams and amides possess great synthetic
utility for the construction of many of the nitrogen-containing het-
erocycles. Activation of the lactam is generally being carried out by
conversion to thiolactam, imino, iminium ethers or as lactam ace-
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tals. Among the activated lactams, lactam acetals are particularly
useful as these react with both nucleophiles and electrophiles at
C1 and C2, respectively, and with bifunctional reagents to form
annulated products. Because of these reasons many workers have
made use of pyroglutamates via the activation of the lactam car-
bonyl at C-5 of pyroglutamate.

L-Pyroglutamic acid has been used as chiral starting material for
the synthesis of anatoxin-a, a potent nerve depolarizing agent, via
intermediacy of thiolactam.12 C–C bond formation at C-5 was ef-
fected by a sulfide contraction reaction39 (Scheme 39).

Bachi et al. have described40 the synthesis of carbapenam-3-
carboxylates 207(a) and 207(b) starting from ethyl (S)-pyrogluta-
mate which was converted to the corresponding 5-thioxo deriva-
tive for C–C bond formation at C-5 (Scheme 40). Compound 200
on reaction with ethyl-2-bromo-3-oxobutyrate, followed by
hydrogenolysis with CH3COOH and TFA (20%) was converted to
diastereomeric compounds 202, 203a and 203b, in which 203a
on reaction with KOH and (Boc)2O afforded N-protected acid 204.
Compound 204 was converted to its PNB ester 205 which after
N-Boc deprotection followed by cyclization was converted to
207a and 207b using substituted carbodiimide.
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Fang et al. have carried out41 the annulation of diazomethylvi-
nyl ketone with a variety of thiolactams prepared from (S)-pyro-
glutamic acid. Thiolactam derivative of pyroglutamic acid 209
was converted to 210 by Michael addition which was cyclized to
get 211 in the presence of [Rh(OAc)2]2, W-2 and Ra-Ni. Resultant
material on oxidation with OsO4 and H2S in methanol, followed
by protection of OH group with TBSCl was converted to 212. Lith-
ium enolate-derived reaction of 212 with t-butyl propionate affor-
ded 213 which upon selective reduction of the double bond of side
chain followed by deprotection afforded 214. Thus this synthetic
strategy provided a novel route for dihydropyridones like ISO
A58365A 214, the c-pyridone analog of the potent ACE inhibitor
A58365A (Scheme 41).

Rosset et al. have described42 the enantioselective synthesis of
(5R)-2-(5-hexenyl)-5-nonyl-3,4-dihydro-2H-pyrrole and (2R,5R),
2-(5-hexenyl)-5-nonyl pyrrolidine, Monomorium minutum ant
venum alkaloids, from (S)-pyroglutamic acid through lactam ether
(Scheme 42).

Both D- and L-pyroglutamic acids have been used43a,b with prior
activation at C-5 for the synthesis of semicorrin metal complexes
as enantioselective catalysts (Scheme 43). These semicorrins43b
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225–228 possess several features that make them attractive li-
gands for enantioselective control of metal-catalyzed reactions.

Singh et al. described44 a simple and efficient synthesis of 8-
methyl-3,8-diazabicyclo[3.2.1]octane (azatropane) and 3-substi-
tuted azatropanes using pyroglutamic acid as starting material
and exploiting amide activation methodology (Scheme 44). Pyro-
glutamic acid was converted to N-methyl pyroglutamate which
on reaction with Lawesson’s reagent was converted to the corre-
sponding thio lactam. Treatment of thio lactam with methyl iodide
in benzene, followed by reaction with nitro methane in the pres-
ence of triethylamine yielded nitroenamine 230. Nitroenamine
230 after catalytic hydrogenation over Pd–C in the presence of
ammonium formate in absolute methanol afforded compound
231. Compound 231 on reduction of lactam carbonyl with LiAlH4

followed by N-alkylation under usual conditions furnished the de-
sired compound 233.

Liyanage et al. established45 the synthetic route for carbapy-
ochelins via diastereoselective azidation of 5-(ethoxycarbonyl)
methyl proline derivative (Scheme 45). Pyroglutamic acid deriv-
ative 234 on reduction of azide group, followed by EDC-medi-
ated coupling of crude amine with O-benzyl salicylic acid
afforded compound 235, which was subjected to the reduction
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of ethyl ester group in the presence of lithium borohydride to
give 236. Compound 236 on further hydrogenolysis followed
by cyclization with Burgess reagent afforded 237. Compound
237 on deprotection of t-butyl group afforded the desired carb-
apyochelins 238.

In a view to develop methodologies for the chirospecific synthe-
sis of 5-butyl-2-heptyl pyrrolidines, Shiosaki et al. reported a pro-
cedure46 for the asymmetric synthesis of 5-substituted prolines
from pyroglutamates, in which the key steps adopted were the
thiolactam formation from lactam of pyroglutamates followed by
induction of side chain at C-5 through sulfide contraction and
reduction sequences (Scheme 46).

Corey et al.47 have utilized C-5 centre of the pyroglutamate by
reduction for the synthesis of poly functional, structurally defined
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catalyst 252, which finds use in the enantioselective addition of
dialkylzinc reagents to aldehydes (Scheme 47).

Wistard et al. have reported the synthesis of 5-substituted pyr-
rolidines from N-acylated pyroglutamic acid48a,b (Scheme 48).

Agarwal et al. established a concise asymmetric approach to the
bridged bicyclic tropane alkaloid (+)-Ferreiginine using enyne ring-
closing metathesis49 (Scheme 49). Pyroglutamic acid was con-
verted to its benzyl ester, followed by reduction using LiEt3BH
N COOEt
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and MeOH/pTSA to afford C-5 methoxylated ester 257, which
was subsequently subjected to C-5 allylation to afford 258 with
stereoselectivity. Compound 258 on reduction followed by acety-
lenic carbon insertion under modified Witting conditions and sub-
sequent hydrolysis of the resultant product afforded 260.
Treatment of 260 with Grubb’s catalyst yielded 261 which after a
sequence of reactions afforded the desired product (+)-ferreiginine
263.
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Another approach for the preparation of pyrrolidine allylation
products involving diastereoselective enzymatic ester hydrolysis
(Scheme 50) has also been reported.50 An important application
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Scheme 50.
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Scheme
of this reaction is in the addition of trimethylsilane to various N-
acyliminium ions bearing ester side chains. As a result the precur-
sor 264 could be converted to its allylated derivative 265.

Mandal et al. described an efficient synthesis of the constrained
peptidomimetic 2-oxo-3-(N-9-fluorenyloxy carbonylamino)-1-aza-
bicyclo[4.3.0]nonane-9-carboxylic acid from pyroglutamic acid51

(Scheme 51). N-Boc methyl pyroglutamate 131 on reaction with
vinyl magnesium bromide afforded Micheal acceptor 266, which
on reaction with Schiff’s base in the presence of Cs2CO3 followed
by hydrogenation using Pd/C in EtOH/AcOH (9:1) coupled with
cyclization, was converted to diastereomeric compounds 268a
and 268b. Compound 268b was epimerized to 268C in the
2COOtBu
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presence of NaHMDS. Treatment of each diastereoisomer of 268 un-
der usual conditions afforded the desired stereospecific isomers of
269.

Hanessian et al.52 synthesized N-acyloxyiminium ions gener-
ated from 4-substituted L-pyroglutamic esters with 4-(3-bute-
nyl),4-(3-butynyl),4-(3-cinnamylmethyl) and 4-allenic ethers
which subsequently underwent rapid Lewis acid-mediated carb-
oxycyclization to afford stereodefined azacyclic compounds
(Scheme 52).

Conchon et al. described53 asymmetric synthesis of 3,5-disub-
stituted indolizidines by intramolecular addition of an allylsilane
on an N-acyliminium ion derived from pyroglutamic acid. Com-
pound 273 on reaction with benzylchloroformate in the presence
of n-BuLi, followed by reduction was converted to 274, which on
reaction with a-hydroxy b-trimethylsilyl-c-allyl derivative in the
presence of SnCl4 was converted to 276 and subsequent reaction
with PDC led to cyclization, thereby affording 278. Compound
278 after hydrogenation afforded isomers 279 and 280 (Scheme
53).

Peng et al. reported the designing and synthesis of a 1,5-diaza-
bicyclo[6,3,0]dodecane amino acid derivatives as novel dipeptide
reverse-turn mimetics54 (Scheme 54). Pyroglutamic acid derivative
281 on reaction with TBSCl, followed by hydrogenation using Pd/C
catalyst was converted to 282, which after N-acylation coupled
with the deprotection of OH group afforded 283. Oxidation of side
chain OH group of 283 followed by N-deprotection coupled with
cyclization gave the desired compound 285.

Angiolini et al. carried out55 synthesis of azabicyclo alkane ami-
no acid scaffolds as reverse-turn inducer dipeptide mimics
(Scheme 55). Compound 286 upon oxidation, followed by reaction
with (±)-(Z)-a-phosphonoglycine trimethyl ester and subsequent
protection of NH group afforded 287. Compound 287 on alkaline
hydrolysis afforded 288, which on hydrogenolysis followed by
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cyclization was converted to the desired molecules 289 and 290
as diastereomers.

Ghammarti et al. described the synthesis of 1,5,6-10b-tetrahydro-
2H-pyrrolo[1,2-c]quinazoline-3-ones from pyroglutamic acid56

(Scheme 56).
Danishefsky et al.57 described total synthesis of salinosporamide

A, (Scheme 57) using pyroglutamic acid as a chiral starting material.
Manzoni et al. reported the synthesis of spiroazabicycloalkane

amino acid scaffolds as reverse-turn inducer dipeptide mimics58

starting from pyroglutamate (Scheme 58). Compound 303 on
swern oxidation afforded aldehydic ester 304, which on witting
reaction as described in Scheme 55 gave 305. Compound 305 after
protection, deprotection and cyclization sequences afforded diaste-
reomers 307a and 307b.

Mulzer et al. synthesized rigid dipeptide mimetics. They have
carried out stereocontrolled synthesis of all eight stereoisomers
of 2-oxo-3-(N-Cbz-amino)-1-azabicyclo[4,3,0]nonane-9-carboxylic
acid esters59 (Scheme 59). Compound 308 upon oxidation followed
by witting reaction as described in Scheme 55 was converted to
310 and alkene component was subsequently reduced to get 311.
Compound 311 after t-butyl ester hydrolysis, cyclization and con-
version of carboxylic to its methyl ester afforded 312.

Hussaini et al.60 reported a concise approach for the synthesis of
cis-2,5-disubstituted pyrrolidines starting from pyroglutamic acid
(Scheme 60). 5-Thioxo ethyl prolinate 200 was converted to 5-
alkylidine derivative 313 on reaction with diethyl bromomalonate
in the presence of sodium bicarbonate. Compound 313 after N-
benzolylation afforded N-protected derivative 314. Compound
314 on hydrogenation in the presence of H2 (Pd–C), EtOH and
CH2Cl2 gave N-benzoyl 2,5 disubstituted pyrrolidine 315.

In another publication the same researchers have described a
new methodology for the diastereoselective synthesis of 2,5-disub-
stituted pyrrolidine by the reduction of enamines derived from
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pyroglutamic acid61 (Scheme 61). Compound 316 was converted to
its N-Boc derivative which upon reduction in the presence of
NaBH4 gave the desired product 318.

Moloney et al. described62,144 a direct and versatile synthetic
route for the reliable synthesis of trans-2,5-disubstituted pyrrol-
idines from pyroglutamic acid. N-Boc ethyl pyroglutamate 319
was reduced to 5-substituted product 320, which on reaction with
PhSO2H gave 321 (Scheme 62).
Chan et al.63a–c described the conjugated addition of activated
nitrogen nucleophiles, to a,b-unsaturated bicyclic lactams with
an objective to synthesize enantiopure b-aminopyrrolidinones
(Scheme 63) and a,b-diaminopyrrolidinones64 (Scheme 64),
respectively, from (S)-pyroglutamic acid. Lithium enolate-derived
Michael addition of 324 with di.tert-butyl azodicarboxylate affor-
ded diamino lactam 325. This compound was transformed to the
corresponding lactam 326 by deprotection with TFA which on
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hydrogenolysis using Pd/C in glacial acetic acid afforded 3,4 diami-
no pyroglutaminols 327a and 327b.

Hara et al.65 described remarkable endo selectivity on hydroxyl-
ation of bicyclic lactam enolates 328 with MoOPD and MoOPH to
afford hydroxylated products 329a and 329b (Scheme 65) derived
from pyroglutamic acid.

In another approach Bailey et al. described the diastereoselec-
tivity during alkylation of bicyclic lactams66 (Scheme 66). Com-
pound 330 on reaction with acetophenone dimethyl acetal using
pTSA (catalytic amount) was converted to the corresponding prod-
uct 331a, which after Li enolate-derived benzylation reaction at C-
7 was converted to 331b.

Colombo et al. reported67 synthesis of new bicyclic lactam pep-
tidomimetics through ring-closing metathesis reactions (Scheme
67). N-Boc-5-allyl-L-proline methyl ester 332 was converted to
333 by acidic hydrolysis with deprotection of Boc group, com-
pound 333 on reaction with 2 benzyl 2 benzyloxycarbonylamine
but-3-enoic acid and PyBropR in the presence of DIEA and DMAP
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afforded dipeptide 334. Compound 334 on cyclization in the pres-
ence of Grubb’s reagent, followed by catalytic hydrogenation gave
the desired peptidomimetic 336.
Hanessian et al.68 reported design and synthesis of diversified
azacyclic inhibitors of endothelin converting enzyme. A series of
azacyclic phosphonic acids were synthesized from L-pyroglutamic
acid (Scheme 68) N-Boc methyl pyroglutamate 131 on reaction
with allyl bromide in the presence of LiHMDS was converted to
4-substituted diastereomeric products 337a and 337b, where com-
pound 337a was converted to its dimethylphosphonates 338a and
338b. Further reaction of allyl intermediate 338a with BH3�THF and
NaOH, followed by tosylation and induction of the naphthalamide
moiety gave 339. Compound 339 after a sequence of reaction was
converted to 340.

Brana et al.69 developed a route for the synthesis of spiro-bis-c-
lactam utilizing a chemoselective Michael reaction as a key step for
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the synthesis (Scheme 69). Methyl N-(-p-methoxybenzyl) pyroglu-
tamate on deprotonation with LiHMDS followed by reaction with
electrophiles gave 2-substituted product 342, which on hydroge-
nation with Raney Ni afforded spirobis cyclic lactam 343.

Harris et al.70 developed a route for the synthesis of seven mac-
rocyclic analogues of the neuroprotective tripeptide glycyl-L-pro-
lyl-L-glutanic acid (GPE) using pyroglutamic acid (Scheme 70) as
NO OR''
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Scheme
a chiral precursor. N-Protected pyroglutamate 311 on selective
reduction of lactam carbonyl group with LiEt3BH followed by
BF3�Et2O mediated allylation with allyltributylstannane was con-
verted to 344 which after deprotection of Boc, followed by N-acyl-
ation gave 347. Compound 347 after cyclization under normal
conditions afforded 348 which on hydrolysis of ethyl ester afforded
acid 349. Subsequent reaction of 349 with 350 in the presence of
BOP-Cl gave olefin 351. Treatment of olefin over PtO2 followed
by immediate deprotection of Boc and esters group afforded 352.

Langlois et al. described71 the synthesis of new polyhydroxylat-
ed indolizidines from bicyclic silyloxy pyrrole (Scheme 71). Com-
pound 134 upon oxidation was converted to regioselective
isomers 353 and 354, where bicyclic derivative 353 after deprotec-
tion followed by protection with TBDMSCl, and subsequent sodium
enolate-derived reaction with allyl bromide gave N-allylated prod-
ucts 356 and 357 which on treatment with Grubb’s catalyst under-
went cyclization to give 358. Compound 358 on oxidation with
OsO4 gave diols 359 and 360.
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Deyine et al. reported stereoselective synthetic route for the
synthesis of enantiopure 3,4,5-trisubstituted piperidines, using
(S)-pyroglutaminol as a chiral precursor72 (Scheme 72).

Davies et al. reported73 the synthesis of an external b-turn,
based on the GLDV motif of cell adhesion proteins. Pyroglutamates
364 was converted to thio ester 366 then to 5-substituted product
367 which upon hydrogenation followed by treatment with
MeOH–TFA gave 368 as starting material for cyclization to get
370 (Scheme 73).

Gedu et al. established the synthesis of new isoquinolines 372
starting with pyroglutamic acid via substituted ketones74 (Scheme
74).

Olivo et al. achieved75 the synthesis of (�)-stemoamide 377 in
11 steps from 5 acetoxy-N-crotyl-pyrrolidinone. A chiral N-acyl
thiazolidinethione synthesized as an intermediate was employed
for stereoselective addition to a cyclic N-acyl iminium ion (Scheme
75).

Manzoni et al. reported76 stereoselective alkylation approaches
for the synthesis of eight enantiopure, sterically constrained Ca-
tetrasubstituted azabicyclo alkane amino acids (Scheme 76). Pyro-
glutamate derivative when reacted with benzyl bromide in the
presence of base gave alkylated derivatives 379 and 380 as
diastereoisomers.

Bracci et al. described stereoselective synthesis of functional-
ized 2-oxo-1-azabicyclo alkane through a ring-closing metathesis
reaction thereby able to construct a seven-membered lactam
388, starting with pyroglutamate derivatives77 (Scheme 77). Com-
pound 381 on reduction, followed by reaction with MeOH and
PPTS was converted to 383 with methoxy group at C-5 O-silyl
derivative 383 was converted to O-acetyl derivative 384 so as to
N
H

O
OH

N

O

O

Ph

N+

O-

Ph

18

361

heat

Scheme
avoid O-deprotection. Compound 384 was transformed to 5-prope-
nyl proline 385 on reaction with propenyl bromide in the presence
of Li, CuBr�Me2S and BF3�Et2O. Compound 385 after N-Boc depro-
tection followed by N-acylation was converted to 387. Compound
387 was subjected to cyclization in the presence of Grubb’s catalyst
and followed by reduction in the presence of nickel boride thereby
affording cyclized products 388.

3. Asymmetric use of pyroglutamates without prior
modifications

Even though the earlier studies on the asymmetric use of pyrog-
lutamates required prior modifications such as reduction at C-2 or
activation at C-5 so as to prevent racemization, however few of the
reports are available describing asymmetric use of pyroglutamates
without prior modifications.

3.1. Direct chain elongation reactions

Katritzky et al.78 discovered an expedient route for the synthe-
sis of N-Z-pyroglutamoyl-amino acid derivative by direct coupling
of the C-terminus activated N-protected pyroglutamate (Scheme
78).

Toyooka et al. discovered enantioselective synthesis of a
hydroxyindolizidine alkaloid using pyroglutamic acid as a starting
material79 (Scheme 79). Methyl pyroglutamate was first subjected
to N-protection using benzyloxy carbonyl chloride and subsequent
reaction with n-butyl magnesium bromide in the presence of TME-
DA resulted in ring opening coupled with the introduction of n-
butyl group thereby furnishing 392. Compound 392 on Martin’s
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transformation produced 2,5-cis-disubstituted pyrrolidine 393.
Treatment of 393 with DIBAL followed by the addition of vinyl
Grignard reagent to resultant aldehyde provided alcohol 394 as a
mixture of diastereomers. The cross-metathesis reaction of 394
with 1-hexen-3-one in the presence of Grubbs II generation cata-
lyst afforded the homologated product 395. Exposure of 395 to
hydrogenation in the presence of Pearlman’s catalyst furnished
the two indolizidines 396a and 396b, which were separated to
get (�)-396a as a major diastereomer and 396b as a minor isomer.

Li et al. reported80 first enantioselective synthesis of (D)-2-tert-
butoxycarbonylamino-5,5-difluoro-5-phenyl-pentanoic acid 400
with an objective to incorporate in growth hormone secretagogues
(Scheme 80). N-Boc ethyl pyroglutamate 319 on treatment with
phenyl magnesium bromide, followed by reaction with 1,2-thioe-
NAcOS N

Ph

OS

Me

O

373 374

Iminium ion

addition
+

N

O

S N

Ph

OS

Me

Ph

OH

376

9 steps

Scheme
thane in the presence of BF3�Et2O afforded two compounds 397a
and 397b. Subsequent N-acylation with acetic anhydride in the
presence of triethylamine afforded the desired acetamide 398.
Treatment of acetamide 398 with NOBF4, HF/pyridine, followed
by deacetylation yielded amino carboxylic ester 399b which after
protection of primary amine with Boc group followed by ester
hydrolysis afforded the desired compound 400.

Gu et al. reported81 a concise synthesis of (2S,4S)-4-methylglu-
tamic acid 406 (Scheme 81) starting from pyroglutamic acid. Com-
pound 402 on reaction with LiN(SiMe3)2 in THF and MeI was
converted to isomers 403 and 405, which after alkaline hydrolysis
followed by N-Boc deprotection afforded 404 and 406.

Dieterich et al.82 reported the synthesis of (2S,3S)-[3-2H1]-4-
methylglutamic acid and (2S,3R)-[2,3-2H2]-4-methyleneglutamic
acid. Compound 131 was converted to 4-[N,N-dimethyl amino]-
methylene derivative 407. Compound 407 on hydrido deamination
with DIBAL-H afforded 4-methylene pyroglutamate 408. Com-
pound 408 on reaction with LiOMe in the presence of MeOH, fol-
lowed by acidic hydrolysis using HBr furnished substituted
glutamic acid 410 (Scheme 82).

Dinsmore et al.83 described the use of a modified ring-switching
strategy for the synthesis of glutamate antagonist (2S)-2-amino-3-
(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)propionate 417 and
related compounds having two asymmetric centres, from pyroglu-
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tamic acid (Scheme 83). Aldehydic group was introduced at C-4 of
N-protected pyroglutamate 411. The resultant compound 412 on
amination with NH4OAc–AcOH, followed by reaction with ClSO2N-
CO gave diastereomers 414 and 415, subsequent reaction with
K2CO3–EtOH, followed by hydrolysis afforded 417.

Langlois84a,b et al. described the diastereospecific formal syn-
thesis of (2R,3S)-2-amino-tetradeca-5,7-dien-3-ol 423, a natural
product isolated from xestopongia species using epoxidation and
epoxide ring-opening sequences in native pyroglutamate moiety
(Scheme 84). Compound 418 was converted to 419, which after
O-deprotection at C-4 and O-protection at C-5 gave 420. Com-
pound 420 on iodonation using NaI in DMF gave 421, which on
hydrogenolysis using H2–Pd/C was converted to 422. Compound
422 on reaction with KCN in the presence of EtOH–THF underwent
ring opening to give 423.

Ring opening of N-alkoxycarbonyl c-lactam 424 with lithium
methylphenylsulfone, resulted in the synthesis of enantiopure cis
2,5-disubstituted pyrrolidines85 (Scheme 85). Pyroglutamic acid
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derivative 424 on reaction with methylphenylsulfone in nBuLi
using THF as a solvent, followed by desulfonylation using Na–Hg
and Pearman’s catalyst afforded compound 425, which after
hydrogenation followed by reaction with LiAlH4 afforded 428.

New diastereoselective synthetic route for 2-substituted cis-
(2S,5S)-and trans-(2S,5R)-5-alkylprrolidinones as indolizidine and
pyrrolizidine scaffolds has been reported by Mota et al.86 (Scheme
86).
Oba et al.87 reported the synthesis and reactions of novel 3,4-
didehydropyroglutamate derivatives through hydrogenation and
ring-opening sequences with H2 and Pd/C in the presence of
CH3OH. The ABO ester 432 on hydrogenation followed by ring
opening afforded L-glutamic acid (Scheme 87).

Another ring-opening strategy via copper (1) mediated cross-
coupling of pyroglutamic acid-derived organo zinc reagent with
acid chloride was reported by Hjelmgaard et al.88 (Scheme 88).
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Compound 18 after tosylation, followed by reaction with NaI and
MeCN was converted to iodo products 434 and subsequently to
organo zinc compound 435. Compound 435 on reaction with
CuCN�2LiCl and RCOCl gave 438a and 438b on the one hand and
through acidification afforded 436 or 437 on the other hand.
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Makino et al. described89 stereoselective synthesis of (S)-(+)-
lycoperdic acid through an endo selective hydroxylation of the chi-
ral bicyclic lactam enolate with MoOPH (Scheme 89). Lienolate-de-
rived reaction of 19 with allyl bromide afforded 4-allyl derivative
439a, which on further reaction with LDA and MoOPH gave 4-al-
lyl-4-hydroxy derivative 439b. Allyl group of 439b was subjected
to hydroboration–oxidation sequences to get diol 440. Compound
440 after a sequence of reactions was converted to (+)-lycoperdic
acid 442.

Cohen et al. described the synthesis of (S)-(+)-lycoperdic acid90

442 starting with pyroglutamic acid derivative 443 (Scheme 90).
Bromo lactam compound 443, when subjected to tandem oxida-
tion–annulation reaction with Jones reagent at 0 �C followed by
workup with potassium carbonate delivered spirolactam 444a.
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taminol 444b. Oxidation of 444b with RuCl3 followed by exposure
of crude mixture to TMSCHN2 afforded methyl ester 444c which
after acidic hydrolysis followed by purification yielded the desired
(S)-(+)-lycoperdic acid 442.

3.2. Use of N-derivatized pyroglutamates for asymmetric
synthesis

3.2.1. Diels–Alder reactions
Highly asymmetric Diels–Alder reactions have been carried out

using (S)-pyroglutamic acid derivatives as chiral dienophiles.
Asymmetric Diels–Alder reaction of cyclopentadiene with chiral
dienophile 445 derived from (S)-pyroglutamic acid derivatives in
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Scheme 92.
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Scheme
the presence of a Lewis acid catalyst such as diethylaluminium
chloride in toluene afforded cyclo adducts 446 with high stereose-
lectivity91 (Scheme 91).

Strong chiral influence of pyroglutamate has also been utilized
in diene component of Diels–Alder reaction. Menezes et al. have
explored the use of ethyl-N-dienyl pyroglutamates as novel asym-
metric diene where chiral cyclohexenyl amine derivatives 448
were obtained in good yields92 (Scheme 92).

Defoin et al.93 have carried out asymmetric hetero Diels–Alder
cycloadditions using chiral N-dienyl lactam and acyl nitrosodieno-
philes (Scheme 93).

3.2.2. Radical cyclization
Asymmetric synthesis of pyrrolidinones by radical cyclization of

N-allylic pyroglutamates which were synthesized from ethyl-(S)-
pyroglutamate has been carried out94 (Scheme 94).

3.2.3. N-Acylations/alkylations of native pyroglutamates
Boisse et al. discovered95 synthetic strategies for new compto-

thecin analogs starting with pyroglutamic acid derivative. In one
of the approaches methyl pyroglutamate after N-benzoylation
with 2-nitrobenzoyl chloride in the presence of NaH, followed by
reductive cyclization with SnCl2 in ethanol afforded modified pre-
cursor of camptothecins 457 (Scheme 95).
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In an attempt to develop potent ACE inhibitors such as 459 and
461 derived from pyroglutamates, N-acylations of pyroglutamates
have been reported96a,b (Scheme 96). These N-acylations have been
accomplished by the reaction of pyroglutamate derivative 177
with NaH and acid chloride for the synthesis of modified captopril
analog 459, and with NaH and p-nitrophenylester of Z-Ala-OH for
the synthesis of enalapril analog 461.

Hanessian et al.97 reported the synthesis of 6-substituted
hydroindole 2-carboxylic acids from pyroglutamic acid derivatives,
where compound 462 on reaction with SnX4 was converted to
bicyclic ester 463, and the resulting product was subsequently con-
verted to 464 using Bu4NOAc in toluene (Scheme 97).

Straight forward ring expansion of pyroglutamates to Perhydro-
1,3-diazepine-2,4-diones was reported by Stevens et al.98 (Scheme
98).
Bourry et al. described99 their studies on pyrrolidinones oxida-
tion and rearrangements in the hexahydrobenz[f]indolizine-3,10-
dione series (Scheme 99). N-Benzyl pyroglutamic acid 466 on reac-
tion with thionyl chloride and ClCH2CH2Cl afforded compounds
467a–467c, where compound 467a was converted to pyrrolinone
468 with HCl and O2 at room temperature.

Enders et al. delivered a synthetic strategy for enantiopure tria-
zolium salts from pyroglutamic acid and their evaluation in the
benzoin condensation (Scheme 100). Pyroglutamic acid after ester-
ification followed by reaction with phenyl magnesium bromide
yielded substituted c-bytyrolactam 112a. Reduction of tertiary
alcohol group of compound 112a led to lactam 469, which was
then converted to triazolium salt 470100 under usual conditions.

Dudot et al. described the synthesis of chiral pyroglutamate
amines through hydrogenation followed by alkaline hydrolytic
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cleavage of benzoyl ester101 (Scheme 101). Compound 471a was
subjected to hydrogenation, followed by alkaline hydrolytic cleav-
age to get 471b which on reduction afforded diamine 472.

Zampella et al.102 discovered amphiasterins; a new family of
cytotoxic metabolites from the marine sponge plakortis quasiam-
phiaster, which is N-alkylated pyroglutamic acid unit (Scheme
102).

Bourry et al.103 carried out studies on pyrrolidones. They de-
scribed an improved synthesis of N-arylmethyl pyroglutamic acids
(Scheme 103). They have also carried out studies on pyrrolidinones
with an objective to improve the anticancer properties of methyl
N-(3,4,40,5-tetramethoxybenzhydryl)pyroglutamate (HEI 81)104

(Scheme 104).
In our recent publication we described the synthesis of N-[30-

(acetylthio) alkanoyl] and N-[30-mercaptoalkanoyl]-4-a-(S)-(phe-
nyl methyl) pyroglutamic acids and proline as potent ACE inhibi-
tors. Lithium enolate-derived N-acylation of 4-a(S)-phenylmethyl
pyroglutamate 478 with 3-acetylthioalkanoyl chloride and 3-acet-
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ylthio-2(S)-methyl alkanoyl chloride afforded compound 479. Sub-
sequent deprotection and purification yielded the desired ACE
inhibitors 481105 (Scheme 105).

Hanessian et al.106 reported the N-acyloxyiminium ion aza-
Prins route to octahydroindoles leading to total synthesis and
structural confirmation of the antithrombolic marine natural prod-
uct oscillarin (Scheme 106). Pyroglutamic acid derivative 482 after
Boc deprotection was subjected to N-acylation using 483 as an
acylating agent to get 484. The resultant material was converted
to precursor 486 by coupling with proline derivative 485, com-
pound 486 on deprotection under acidic condition afforded oscill-
arin 487.

They have also described the total synthesis and structural
assignment of the marine natural product Dysinosin A: a novel
inhibitor of thrombin and Factor vlla107a (Scheme 107), utilizing
a carbon construct strategy that generates subunits originating
from L-glutamic acid, whereas Carroll et al. reported the isolation
and structure determination of this new marine natural product
Dysinosin A.107b

Daiya et al.108 described diastereoselective heterogeneous catal-
ysis of 2-methyl nicotinic acid 496 using pyroglutamic as chiral
auxiliary (Scheme 108). Methyl pyroglutamate 111 on reaction
with 2-methyl-nicotinoyl chloride (generated in situ by reaction
of 2-methyl nicotinic acid 494 with thionyl chloride) under Schaut-
ann Baumann conditions afforded N-acylated pyroglutamate 495
having side chain corresponding to 2-methyl nicotinic acid, which
on catalytic hydrogenation afforded N-(Z-methyl piperidine-3-oyl)
methyl pyroglutamate 496 with reduction of N-acyl side chain.

Lee et al.109 carried out asymmetric synthesis of trans-1-amino-
indolo[2,3-a]quinolizidine 502. N-Benzyloxy carbonyl 2(S)-methyl
pyroglutamate 497 on reaction with arylethylamine in the pres-
ence of Me3Al underwent ring opening. The resultant product on
subsequent reduction afforded 499, which upon dehydration cou-
pled with cyclization gave a tricyclic compound 500. Compound
500 on hydrogenation using H2/Pd–C followed by reduction affor-
ded the desired molecule 502 (Scheme 109).

Belvisi et al. reported110 stereoselective synthesis of conforma-
tionally constrained unnatural proline-based amino acids and pep-
tidomimetics, N-Boc 4-allyl pyroglutamate derivative 503 was
subjected to reduction, allylation sequence on lactam carbonyl
thereby furnishing stereoisomers 505 and 506 which on treatment
with Grubb’s catalyst, followed by hydrogenolysis gave 508 and
510 as stereoisomers (Scheme 110).

Stereoselective alkylation of a bicyclic lactam derived from
pyroglutamic acid has been reported by Zhang et al.111 (Scheme
111).

Zhang et al.112 described a convenient and versatile synthesis of
6,5- and 7,5-fused lactams as peptidomimetics starting with pyro-
glutamate derivatives (Scheme 112). N-Boc-2(S)-ethyl pyrogluta-
mate 131 was converted to its corresponding 4-cinnamyl
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derivative 515, which after deprotection of Boc group followed by
Lienolate-derived N-acylation with Boc (D)-ser-Bzl-Osu afforded
compound 517. Compound 517 on hydrogenolysis using H2/Pd–C
was converted to N-acylated products 518 with deprotection of
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o-benzyl group of side chain. Compound 518 on the reduction of
lactam carbonyl with LiBEt3H followed by acid-catalyzed dehydra-
tion cyclization sequences gave 520. Compound 520 upon alkaline
hydrolysis afforded the desired peptidomimetics 521.

An expedient synthesis of (+)-trans-5-allyl hexahydroindolizi-
din-3-one was carried out by Potts et al.113 (Scheme 113).

Thanh et al. reported114 enantioselective synthesis of indolizi-
dine (�)-237A [(3R,5S,8aR)-3-butyl-5-(1-oxopropyl)octahydroind-
olizine], starting from pyroglutamate derivative. Compound 524
on nucleophilic addition with (CH3O)2PO–CH2CO–C(OEt2)Et pro-
duced 525 which after hydrogenation with H2 (1 bar), PtO2 in
methanol followed by cyclization gave 527 and the resultant mate-
rial was reduced with NaBH3CN to afford a stereoisomer of (�)-
Myrmicarine 237A (Scheme 114).
Legrand et al. reported115 studies on condensation of pyrrolidi-
nones with silyl derivatives. Trimethoxyphenyl naphthylcarbinol
trimethyl silyl ether was condensed with the methyl N-trimethyl-
silyl pyroglutamate affording two separable esters (Scheme 115).

3.3. Functionalization at C-2, C-3, C-4, of pyroglutamates

Yamada et al. established116 an efficient asymmetric synthesis
of the functionalized pyroglutamate core unit common to oxazolo-
mycin and neooxazolomycin (Scheme 116). Pyroglutamic acid
derivative 533 on protection of carboxylic group as t-butyl ester
and subsequent N-methylation afforded 534. Compound 534 on
debenzylation at C-3 followed by carboxymethylation of resultant
alcoholic functionality delivered a carbonate 535. The quarterniza-
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tion of C-2 followed by the introduction of exomethylene group at
C-3 was carried out by internal nucleophilic trap of the carbonate
535 and lactone opening with the phenylselenide anion. The syn-
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thesized core unit 540 could be a useful scaffold for stereoselective
functionalization corresponding to the oxazolomycin’s polyene
segments.

Panday et al. have reported117 the simple pathway for the syn-
thesis of (�)-bulgecinine (Scheme 117) starting with pyrogluta-
mate derivative. Bicyclic lactam derivative 541 was converted to
6-a-hydroxy substituted product 543 via epoxidation and ring-
opening sequences. OH group at C-6 was protected prior to hydro-
lysis of bicyclic ring to get 4-benzyloxy pyroglutaminol, in which
OH group at C-5 was also protected with ethyl vinyl ether in the
presence of acid catalyst to get 546 followed by protection of free
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NH to N-Boc. Compound 547 was subjected to reduction of lactam
carbonyl with DIBAL-H to get 548. Treatment of 548 with MeOH/
HCl led to the protection of OH group at C-2 as OMe and deprotec-
tion at C-5. The resultant product 549 on the introduction of
cyano group at C-2 followed by acidic hydrolysis afforded
(�)-bulgecinine.
Lenda et al. reported118 synthetic strategies for new tetrazole
and triazole substituted pyroglutamic acid and proline derivatives
(Scheme 118). Dimethyl-2,4-dibromoglutarate 552a was allowed
to react with sodium azide, where mono-substituted derivative
552b was obtained as a major product. 1,3-dipolar addition of azide
552b with acetylene afforded 1,2,3-triazole derivative 553a. The
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triazole derivative was subsequently reacted with 3 equiv of so-
dium azide to give 553b. Compound 553b on hydrogenation fur-
nished the corresponding substituted pyroglutamic acid 554 via
an intramolecular aminolysis. Lactam 554 on selective reduction
with BH3 in THF followed by acid hydrolysis and subsequent neu-
tralization with propylene oxide yielded fully deprotected (±)-4-
(4,5-substituted-1H-1,2,3-triazol-1-yl) proline derivative 555.

In an attempt to carry out total synthesis of novel amino acid
antibiotic TAN-950, Tsubotani et al. have made asymmetric
use119 of (S)-pyroglutamate without prior modification through
functionalization at C-4 (Scheme 119).

Later on in their studies on the reactivity of pyroglutamates to-
wards the asymmetric synthesis of 4-substituted pyroglutamates,
Baldwin et al. reported120 that reactions of lithium enolate-derived
from 2(S)-pyroglutamates with various electrophiles, give exclu-
sively 4-a-substituted products (Scheme 120).

Subsequently in our continuing studies121 on the behaviour of
protected pyroglutamate towards electrophiles we reported de-
tailed studies on chiral alkylation and aldol reaction at C-4 of
pyroglutamates through their lithium enolates (Scheme 121)
where alkylation at C-4 gave exclusively 4-a-products, whereas al-
dol reactions afforded 4-a- and 4-b-substituted aldol adducts 566
and 567 in the ratio of 4:1.

We have also explored122 the direct synthetic pathway for 4-
(S)-substituted pyroglutamate through 1,3-dipolar addition of
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menthylacrylate with amino acid Schiff’s bases followed by
hydrogenolytic sequences (Scheme 122). These 4-substituted
pyroglutamate and prolinates are part of many of the bioactive
molecules.

As a part of their work on the synthesis of nonproteinogenic
amino acids, Bowler et al. reported123 reactions of lactam enolates
of L-pyroglutamic acid derivatives with various electrophilic imi-
nes and found that the reaction proceeds in good yield with com-
plete stereospecificity at C-4 and impressive stereo selectivity at
the third asymmetric centre (Scheme 123).

Young et al.124 reported double stereo differentiation in aldol
reaction of pyroglutamic urethane esters 576 (Scheme 124) and
the same authors reported the use of acid and aldehyde of pyroglu-
tamate in ring switching reaction leading to lactone 580 as kinetic
products125 (Scheme 125). The 4-substituted pyroglutamate 577
by ozonolysis was converted to aldehyde, in which aldehydic
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group on reduction was converted to alcohol 579 to get ring
switched lactone 580.

Diastereoselective formation of a quaternary centre in pyroglu-
tamate derivative was reported by Oliveira et al.126 (Scheme 126).
Lithium enolate-derived alkylation of pyroglutamic acid derivative
581 with N-Boc-bromomethylindole 582 in the presence of DMPU,
furnished intermediate 583, where lactam part of 583 on alkaline
hydrolysis with LiOH gave 584 which after deprotection afforded
(�)-monatin 586.
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Dinsmore et al. reported the extension of ring switching strat-
egy to the glutamate antagonist 2-(pyrimidin-2,4-dione-5-yl-
methyl)-(2S)-glycine 590127 (Scheme 127).

Qiu et al.128 carried out the synthesis of 4-monofluoromethyle-
nyl 594 and cis-monofluoromethyl-L-pyroglutamic acid 595 via a
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novel dehydrofluorination (Scheme 128). Substrate 591 on reac-
tion with triethylamine in CH2Cl2 was converted to compound
592b, along with compound 592a, in which compound 592b after
catalytic hydrogenation using Pd–BaSO4 in ethanol afforded 593a
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and 593b and subsequently 593b on hydrolysis using TFA gave the
desired compound 595.

Zhang et al.129 carried out the synthesis of N-Boc-4-O-substi-
tuted-5-cynomethyl pyroglutamate 599 (Scheme 129). 4-Hydrox-
ypyroglutamate derivative 596 on Mitsunobu reaction with 4-
choro-1-nepthol afforded 597, which after reduction at C-5 using
LiBEt3H, followed by induction of cyano group at C-5 on reac-
tion with TMSCN and BF3�Et2O gave the desired target molecule
599.
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Stevens et al.130 reported the regioselectivity in the alkylation of
pyroglutamates (Scheme 130). N-Boc benzyl pyroglutamate was
converted to its 4-carboxylate 601 using Li enolate chemistry,
which on further generating lithium enolate at position C-2 and
subsequent reaction with electrophiles afforded 604. In the same
way [1,2] Boc migration during pyroglutamate alkylations has also
been reported by the same group131 (Scheme 131).

Kotoh et al.132 carried out stereoselective synthesis of Nuphor
quinolizidine alkaloid (�)-deoxynupharidines 618–619 (Scheme
COOBn NO- COOBn

Boc

OR'

O

Li+3eq. LiHMDS, THF

−78 oC

602

NO COOBn

Boc

R'OOC

R

R= CH2Cl, Et, Allyl

. RX/ −78 oC

2O/NH4OH
H4Cl(sat)

604

30.

NO COOR

R'

605

NO COOR

R'

606

LiHMDS
EX

E

R'= Boc

31.



S. K. Panday et al. / Tetrahedron: Asymmetry 20 (2009) 1581–1632 1623
132). Compound 609 on reaction with LiBEt3H, followed by witting
reaction gave amide 611, where amidic part was transformed into
aldehydic ester 612 by using DIBAL and subsequently resultant
aldehyde 612 on acidic hydrolysis was converted to 613, which
on deamination with SmI2 in THF–HMPA and methanol gave six-
membered ring product 614. N-Alkylation of 614 with 3-bromo-
2-methyl propane in the presence of NaH provided 615, which
on reaction with Grubb’s catalyst was converted to 616. Compound
616 was treated with 3-lithiofuran, subsequently reduced with
NaBH4, finally subjected to hydrogenolysis using Pd(OH)2 thereby
affording diastereomers 618 and 619.

Merino et al. described133 the diastereoselective approach with
an objective to synthesize 4-hydroxy derivatives 623 (Scheme
133). 3-Hydroxy-pyrrolidinone 620 after protection of all the func-
tional groups was converted to 622 which on reaction with H5IO6

and NaH2PO4 gave target molecule 623.
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Langlois et al. achieved the total synthesis of salinosporamide-
A, a potent proteasome inhibitor, starting from pyroglutamate
derivative134 (Scheme 134). Compound 624 was converted to 625
on reaction with N-methylnitrone in toluene through 1,3-dipolar
addition and resulting adduct 625 was subjected to hydrogenolysis
leading to ring opening, methylation of amino group and subse-
quently cope elimination to afford salinosporamide-A 628.

Hill et al. synthesized135 stereocontrolled spirocyclic bislactams
derived from pyroglutamic acid, compound 629 on reaction with
NaH and BrCH2CN afforded 630 which on treatment with NaBH4

and COCl2 underwent reduction coupled with cyclization to give
spirobicyclic lactams 631 and 632 (Scheme 135).

Herdeis et al.136 carried out a stereoselective synthesis of 3-
substituted (S)-pyroglutamic acid and glutamic acids through
ABO ester derivatives (Scheme 136). Pyroglutamic acid was con-
verted to its ester through condensation, which after protection
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of –NH followed by oxidation was converted to ABO ester 635. For-
mation of epoxide at C-3, 4 of 635 following usual chemistry and
subsequent ring opening with Grignard reagent afforded 637.
Compound 637 after protection and deprotection sequences affor-
ded the desired 3-substituted pyroglutamate 638.
Cienfuegos et al. reported stereoselective synthesis of
conformationally constrained (2S,3S)-3-hydroxyornithine137

(Scheme 137).
Cai et al.138 described the application of (S)-and (R)-methyl

pyroglutamates as inexpensive, yet highly efficient chiral auxilia-
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ries in the asymmetric Michael addition reactions (Scheme 138).
Michael acceptor 650 reacts with Ni(II) complex to give exclusively
651. Compound 651 on treatment with methanoic HCl and subse-
quently treatment with NH4OH and Dowex yielded 3-substituted
pyroglutamic acid 652.

Langlois et al.139 reported the stereoselective formal synthesis
of the proteasome inhibitor salinosporamide A, from (S)-methyl
2-hydroxymethylpyroglutamate through chemoselective O-pro-
tection (Scheme 139).

Fujita et al. reported reactions of optically active 5-substituted-
2-pyrrolidinone derivatives having atropisomeric behaviours. They
carried out 3,5-cis-selective reactions of their enolates with elec-
trophiles140 (Scheme 140).

3.4. Conversion of pyroglutamic acid into prolines

Pyroglutamates can readily be converted into prolines. Rapo-
port et al. converted 4-phenylpyroglutamate 664 to 4-phenyl pro-
linate 665 by reducing with BH3�THF in the presence of a catalytic
amount of NaBH4

141 (Scheme 141).
Pyroglutamates could directly be converted into L-proline in 2-

step one-pot reaction. The conversion involves the treatment of
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pyroglutamic acid with triethyl oxonium fluoro borate and reduc-
tion of the resulting crude imino ether with NaBH4

142 (Scheme
142).

We have also reported a simple procedure121 for the conversion
of 4-substituted pyroglutamates to 4-substituted prolinates 669
via the conversion of pyroglutamate to thio lactam followed by
reduction to the corresponding prolinate in the presence of nickel
boride generated in situ (Scheme 143).

Drauj et al. have converted143
L-pyroglutamate 111 to 5,5-di-

chloro-N-chloro carbonyl 2(S)-methyl pyroglutamate 670 on reac-
tion with COCl2 in dichloromethane at 0 �C with the elimination of
HCl and CO2. Compound 670 on reaction with Bu3N gave 671 with
the elimination of HCl at positions 4 and 5 leading to induction of
double bond. Compound 671 on hydrogenation using Pd/C with
Bu3N gave unsaturated product 672, which on further hydrogena-
tion gave saturated products 673. Compound 673 after several pro-
tection and deprotection sequences afforded L-proline (Scheme
144).

Harris et al.144 reported the synthesis of cyclic proline contain-
ing peptides via ring-closing metathesis (Scheme 145). N-Acyl-5-
allyl diene 677, which was obtained from pyroglutamic acid was
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subjected to cyclization in the presence of Grubb’s catalyst to af-
ford the expected cyclononenes 678.

Chen et al. reported a convenient method for the synthesis of
trans-4-cyclohexyl-L-proline145 (Scheme 146). N-Benzyl pyroglu-
tamic acid was reacted with bromocyclohexene in the presence
of LiHMDS, followed by hydrogenolysis with Pd/C to get 4-substi-
tuted N-benzyl pyroglutamic acid 680 which was condensed with
PhCH2Br to get ester 681. Treatment of 681 with Lawesson’s re-
agents, followed by reduction with Raney Ni afforded 683 and
684. Both these products were subjected further to hydrogenolysis
using H2/Pd–C to get 4-cyclohexyl proline 685.

Langlois et al.146 reported diastereoselective syntheses of
(2S,3S,4S)-3-hydroxy-4-methylproline 691, a common constituent
of several antifungal cyclopeptides (Scheme 147). Compound 686
on reduction using BH3–DMS was converted to 687, resultant
material on hydrogenolysis, followed by NH protection was con-
verted to 688. Treatment of 688 with TBDMSCl gave 689 and sub-
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sequent reaction with NaIO4–RuCl3 followed by acidic hydrolysis
afforded the desired molecule 691.

Two separate and distinct syntheses of stereospecifically deu-
terated samples of (2S)-proline were reported by Barraclough
et al.147 (Scheme 148). Compound 131 on reduction using
H3B�SMe2, followed by acidic hydrolysis afforded proline 666.

Oba et al.148 carried out the synthesis of non-proteinogenic ami-
no acids using Michael addition to unsaturated orthopyrogluta-
mate derivative (Scheme 149). Unsaturated pyroglutamate
derivative 166 on reaction with Gilman reagent delivered a com-
pound 693 having methyl group at C-3. The ABO ester functionality
of 693 was converted to methyl ester through ester exchange reac-
tion with MeOH/HCl. The N-Boc group of 693 which was deprotec-
ted during acidic conditions was protected again with Boc group to
afford 694. Reduction of lactam carbonyl of 694 with BH3�THF fol-
lowed by deprotection of methyl ester of 695 in refluxing 1 M. HCl
and subsequently ion exchange treatment with DOWEX 50WX8
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resin furnished (2S,3S)-3-methylene proline 696 in quantitative
yield.

Kondo et al.149 discovered long acting N-(cyanomethyl)-N-al-
kyl-L-prolinamide inhibitors of dipeptidyl peptidase IV (Scheme
150) starting with pyroglutamic acid derivative. Lithium enolate-
derived alkylation of N-protected ethyl-L-pyroglutamate 319 with
benzyloxymethyl chloride afforded 4-substituted pyroglutamate
697. Partial reduction of cyclic imide carbonyl of 697, followed
by acetalization gave the methyl acetal 698. Stereoselective 5 a-
methylation of 698 with methyl Grignard reagent and copper(I)
bromide-dimethylsulfide complex in the presence of boron tri-
fluoride-etherate, followed by protection of deprotected nitrogen,
led to 699a. Catalytic hydrogenation of 699a provided the alcohol
699b. Jone’s oxidation of 699b resulted in carboxylic acid 700,
which on condensation with N,N-dimethyl amine produced 701a.
Alkaline hydrolysis of compound 701a provided carboxylic acid
701b, which on peptide formation with (2S)-2-cyanopyrrolidine
afforded 702. Acidic deprotection of 702 led to the desired com-
pound 703.

Einsiedel et al. developed a molecular building kit of fused-pro-
line derived peptide mimetics allowing specific adjustment of the
dihedral w-angle (Scheme 151). Unsaturated pyroglutamic acid
derivative 704 on reaction with allyl bromide in the presence of
TMSCl and HMPA, followed by reduction of lactam carbonyl deliv-
ered 706, which after deprotection of alcoholic group furnished
prolinol derivative 707. Jones oxidation led to the formation of
the C-3 functionalized proline 708. Amide formation between the
asymmetric building block 708 and N-substituted glycine deriva-
tives using coupling mixture HATU/HOAt allowed an efficient syn-
thesis of RCM precursor 709. Olefin metathesis using Grubb’s II
generation catalyst afforded seven-membered and eight-mem-
bered unsaturated bicyclic lactams 710. Aminolysis of 710 with
methylamine delivered the model peptides 711.150

4. Conclusions

Thus this review gives explicit information about the versatility
and importance of pyroglutamate with special attention to asym-
metric synthesis of bioactive molecules, natural products as well
as chiral intermediates. On the one hand this important moiety
has allowed the researchers to synthesize bioactive natural prod-
ucts such as anatoxin A, (�)-bulgecinine and salinosporamide A,
whereas on the other hand the use of pyroglutamic acid as a chiral
precursor has enabled the researchers to explore the synthetic
analysis for designed bioactive molecules such as ACE inhibitors
like fosinipril, conformationally constrained peptides as well as
peptidomimetics. Various derivatives of pyroglutamic acid have
also been used to develop catalyst such as semicorrin metal com-
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plexes or 2,5-disubstituted pyrrolidines. Therefore it may be con-
cluded that pyroglutamate has undoubtedly emerged as an impor-
tant chiral synthon and has provided researchers a useful chiral
tool to exploit the reactivity differences within the molecule and
to use it for the asymmetric synthesis of wide variety of bioactive
compounds. The present review is an attempt to describe the use-
ful and important applications on the use of this unique chiral syn-
thon by the researchers all over the world in the recent past, and
shall certainly be valuable, to make further progress and to develop
new strategies for the asymmetric synthesis based on these litera-
ture reports.
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